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ABSTRACT

A workstation-based interactive flow simulator

has been developed to aid in the teaching of un-

dergraduate compressible aerodynamics. By solv-
ing the equations found in NACA 1135, the simula-

tor models three basic fluids problems encountered

in supersonic flow: flow past a compression corner,

flow past two wedges in series, and flow past two op-

posed wedges. The student can vary the geometry
or flow conditions through a graphical user interface

and the new conditions are calculated immediately.

Various graphical formats present the results of the
flow calculations to the student. The simulator in-

dudes interactive questions and answers to aid in

both the use of the tool and to develop an under-

standing of some of the complexities of compress-

ible aerodynamics. A series of help screens make

the simulator easy to learn and use.

INTRODUCTION

The last decade has witnessed a revolution in the

availability, computing power, and memory capac-

ity of personal computers and workstations. Cur-

rent desk top workstations provide computing power

available only on large mainframes in the past. Cou-

pling this hardware growth with new operating sys-

tems, windowing capability, and the development

of graphical user interfaces (GUI) creates an en-

tirely new computing environment. Interestingly,
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it is an environment in which young students feel

quite at home having grown up with video games

and personal computers at school or in the home.

The software tool described in this paper attempts

to use this new technology to improve the basic un-

derstanding of compressible aerodynamics by under-

graduates.

The use of personal computers and workstations

in undergraduate engineering education is a rela-

tively recent development. Earlier efforts (Refs 1-

4) have centered around the use of software devel-

oped for personal computers, but lacking the graph-
ical interface available on workstations. With these

packages, students type input conditions at the key-

board and are presented with principally numeri-

cal output. More recent efforts (Refs 5-7) have in-
cluded a graphical user interface that guides the user

through the package and improves the interaction

with the software. With these packages, students
use a mouse to select options or to vary conditions

and receive principally graphical output. The simu-

lator described in this paper is an extension of a pre-

liminary educational tool developed at the NASA

Lewis Research Center, Ref. 6, which in turn was

developed from a supersonic inlet design and edu-

cational tool, Ref. 7. The Lewis simulators solve

the equations from NACA-1135, Ref 8, to quickly
determine the flow conditions across shock waves

generated by compression surfaces. It became evi-

dent during development of the inlet simulator that

it could be used either for preliminary design or

for graduate level education since it modeled most

of the important physical processes present in high

speed inlets. However the many processes involved

in a typical inlet, including the modeling of the sub-

sonic diffuser and computation of flow spillage and



its associated drag, rendered the tool too complex

for undergraduate education. By limiting the prob-

lem to a single physical process of flow compression

(or expansion) the undergraduate could more easily
study the details of this problem. Since much of the

coding was already available, the development of the

preliminary educational tool was easily completed.
The current simulator is an extension of this prelim-

inary model and incorporates the solution of shock
reflections and intersections which were not present
in the first model. This added solution capability al-

lows the student to explore problems involving mul-

tiple surfaces, opposing wedges or wedges in series.

A guiding principal in the development of this
educational tool is to do more than just present an-

swers to a problem; it is to involve the student in the

learning process by making the student work with
the package to achieve a result. Some flew features
were added to this tool to directly promote student

interaction. The student is presented with a physics

problem in one view window of the computer termi-
nal. In another window is a control panel which the

student uses to vary the conditions of the physics

problem and in a third window raw output data

from the problem is presented to the student. The
student can then select which data to analyze in a

fourth window, where the results are presented as

performance graphs. A series of "Help" screens are
a','ailable to explain how each part works and serves
as an on-line user's manual.

The desk top wind tunnel concept could be used

in many areas of undergraduate education. The cur-
rent tool can be rather easily modified to consider al-

ternate physics problems, such as a supersonic noz-

zle, a sting-mounted wedge at angle of attack, or
a diamond airfoil. The basics of the code could be

retained and other classes of fluids problems coded,

including potential flow, conformal mapping, basic

turbojet analysis, and airfoil theory. Many basic

thermodynamics, magnetics, electrostatics and op-

tics problems also lend themselves to presentation

in this way.

ANALYSIS

The inviscid, supersonic flow past a corner results

in one of three possible physical processes: (1) a nor-

mal shock detached from the corner at large positive

wedge angles; (2) an oblique shock attached to the
corner at low to moderate positive angles; and (3)

a Prandtl-Meyer centered expansion at the corner

for negative wedge angles. The boundary between
attached and detached shock waves can be deter-

mined as a function of the upstream Mach number.

The equations used in the simulator are taken from
lZef. 8 and the reader can find details of the method

of solution for a single wedge problem in Ref. 6.

For multiple wedges two additional physical pro-

cesses are present; shock (or expansion) reflection

from solid surfaces, and shock (or expansion) in-

tersection away from solid surfaces. For simplicity,

only shock waves will be considered in this analysis.

In the shock reflection problem, as shown in Fig. 1,

the incoming shock turns the flow behind it by a

known angle. When the shock strikes the wall it is

reflected with the angle of reflection and the change
in conditions across the reflected shock determined

by the angle of incidence and the strength of the in-
coming shock. The flow downstream of the reflected

shock is parallel to the wall. The equations used to

compute the conditions behind the reflected shock

are those given in Refs 6 and 8 with the '_edge" an-

gle equal to the turning angle behind the incoming
shock. The computational problem is simply one of

locating the reflection point and properly orienting

the problem to use the previously developed flow

equations. There are conditions for which the re-

quired amount of turning exceeds the maximum al-
lowable for an attached oblique shock. Under these

conditions, a shock normal to the wall is formed and

the normal shock relations are used to bring the flow

to subsonic conditions which will support the turn-

ing.

The shock intersection problem can occur in two

forms: between incoming shocks of the same family

which are each turning the flow in the same direction

as shown in Fig. 2a, or between incoming shocks of

opposite families which are turning the flow in oppo-

site directions as shown in Fig. 2b. Details of these

interactions are given in Ref. 9. For shocks of op-

posite families, the shocks appear to pass through
each other but are bent at the intersection point.

For shocks of the same family, the shocks appear

to coalesce into a single continuing shock from the

intersection point with an extremely weak shock (or

expansion) reflected from the intersection point. In

both problems all flow downstream of the intersec-

tion is at the same static pressure and in the same

flow direction. Because different parts of the flow



mayhavepassedthroughdifferentstrengthshock
waves, a slipstream can be formed at the intersec-

tion point as indicated in Fig. 2. Flow on either

side of the slipstream is at different Mach number,

temperature, entropy, or total pressure, but at the

same static pressure and flow direction.

The solution of the flowfield proceeds as follows.

The wedge deflection angles and free stream condi-

tions are set by the user. Shock solutions for the

wedges are generated using the equations given in
Ref. 6. The intersection of shock waves with other

shock waves and with the walls is determined geo-

metrically. For a shock reflection from the wall, a
new shock is begun at the reflection point and the

downstream conditions are determined by the equa-

tions of Ref. 6 using a deflection angle which brings

the flow parallel to the wall. This new shock is then
checked for intersection with other shocks or reflec-

tion from the walls as before and the process is re-

peated. For shock intersections, two new shocks are
begun at the intersection point. Conditions down-

stream of the shock intersection are found by iterat-

ing the solutions on either side of the slipstream un-
til both static pressure and flow direction are equal.
The new shocks are then checked for intersection

with other shocks or reflection from the walls as

before and the process is repeated. Whenever the
deflection conditions would exceed the maximum al-

lowable deflection, a normal shock is drawn across
the flowfield, subsonic conditions downstream of the

normal shock are determined, and the solution is

terminated. In reality, some complex mixed sub-

sonic/supersonic conditions can arise in these types

of problems. In this simulator we do not attempt

to compute these types of conditions but merely in-

dicate the presence of subsonic flows by placing a
normal shock across the flow domain.

DESCRIPTION OF SIMULATOR

Some examples of the results obtained using the

simulator are given by screen dumps in Figs 3-8.
Fig. 3 shows the basic layout of the simulator which
is divided into four main sections: the main view

window is in the upper left, the plotter view window

is in the upper right, the output box is in the lower

right, and the input box is in the lower left.

The main view window shows a schematic draw-

ing of the geometry, the shocks (or expansions), and

labels for the hinges and the wedges. On the work-

station, these features are color-coded, but are pre-

sented here in black and white. The wedges ap-

pear as the nearly horizontal lines with the small

semi-circles denoting the hinge locations. The flow

is from left to right as indicated by the arrow and
the various flow zones downstream of the shocks are

tagged with zone numbers. Sliders are located to
the left and below the main view window to allow

repositioning of the flow problem within the win-
dow.

The plotter view window is located to the right of

the main view window and displays the plots gener-

ated by the student. The student can select which

sets of variables to plot using the input box as de-

scribed below. The size and orientation of the plot

can be modified by the sliders located around the

plotter view window. Details of the generation of
plots is discussed below. Above the plotter window
are four buttons which invoke various utilities for

the simulator. Details on the operation of these fea-
tures can be found in Ref. 6.

The computed output flow conditions are dis-

played in the output box below the plotter view

window. The zone choice button at the top is used
to choose which flow zone to display with the zone

numbers corresponding to the tags in the main view
window. The data is presented in two ways: nu-

merically in the row of boxes at the left, and as bar

charts to the right. Each bar is a different color

corresponding to a different flow variable. The top

bar shows the shock angle in degrees, the bar below

that shows the total pressure ratio from zero at the
left to one on the right. The bottom four bars are

grouped somewhat because the scale on these four
bars axe from zero to ten. Numbers at the bottom

of the panel aid the student in evaluating the bars,

though the exact value can also be obtained from
the numerical boxes. As the flow conditions are

changed in the input box, the recalculated numbers

are displayed and the bar charts move much like a

thermometer. This type of visual output allows the

student to immediately sense in what direction the

flow variables change and by how much for a given

input. Variables displayed in the bar charts are non-

dimensionalized by free stream conditions while the
row of boxes at the bottom show the ratio of the

appropriate variables across the shock wave.

The input box is located to the left of the output



box. It includesthreebuttonsto selectthe prob-

lem for study and four sub-panels to vary conditions

in the problem. The selected problem is indicated

by the darkened '_ight" on the button. The up-

per two sub-panels control the geometry and free
stream flow conditions while the lower two control

the generation of plots. In the upper control pan-

els, the student can type in values of the geomet-

ric or flow parameters or use sliders to pick these

variables. The choice is indicated by pushing the

"Sliders/Enter" buttons between the slider and the

input box as shown in Pigs. 3 and 5. The student

can vary the free stream Mach number, the values

of the wedge angles and the spacing between the

wedges, depending on the problem selected. More

details about the operation of the plotter sub-panels

will be given in the next section.

RESULTS

l_ef. 6 contains several examples of the use of the

simulator to study single wedge problems; this pa-

per presents only solutions to multiple wedge prob-
lems. The simulator can be operated in two modes;

interactive mode and plotting mode. In the inter-

active mode, the student can vary the Mach num-

ber, wedge angles and spacing using the input box
and monitor the changes of the dependent flow vari-

ables using the output box. By observing the out-

put numbers and bar charts, the student can get
a sense of the variation of the dependent variables

as independent conditions are changed. To study

the variation of a single flow variable through the

interaction, the simulator should be run in plotting

mode. For the corner problem, the student can plot

any of the dependent flow variables versus changes

in either the Mach number or the wedge angle. For

the multiple wedge problems, the student can posi-
tion a '_robe" in the main view window and record
the value of a chosen flow variable versus location.

As the student develops the plots, they are automat-

ically scaled and displayed in the plotter window.

Figures 3-6 can be ased again to demonstrate how

a student might use the interactive mode of the sim-

ulator. As the input is varied the simulator recal-

culates the flow conditions and instantly changes

the geometry and shock orientation to reflect the

new conditions. In Fig. 3, Mach 2.5 flow past two

10.0 degree wedges has been calculated resulting in

the intersection of two shocks of the same family.

The shocks tagged 'T' and "2" appear to coalesce

into the shock tagged "3". For this set of condi-
tions a very weak secondary expansion, tagged "4"

is necessary to match the static pressure and flow
deflection conditions downstream of the intersection

and a slipstream is generated between zones 3 and

4 as indicated by the dashed line. The results pre-

sented in the output box give the conditions in zone
3 downstream of shock "3". These results have been

checked against the NACA-1135 curves to insure

proper coding. Figure 4 shows the same physics

problem but with zone 4 conditions now given in

the output box. Comparing Figs. 3 and 4, one can

verify that the flow turning and static pressure are

the same, while the remaining flow variables differ.

In Fig. 5, the student has decided to study the shock

reflection problem at Mach 2.3 with a 10.0 degree

wedge shock generator. The shock reflects from an

opposed wedge set at 0.0 degrees to eliminate addi-
tional shocks and their intersections. The conditions

shown in the output box are those in zone 2, down-
stream of the reflected shock. The ratio boxes at the

bottom of the output box refer to conditions across
shock "2", i.e. the ratio of zone 2 to zone 1, while the

conditions on the bar graphs show the ratio of zone
2 to zone 0, free stream. Comparing these results

for static pressure indicate that zone 2 is slightly

more than 3.0 times free stream pressure, while only

1.7 times the pressure behind the incident shock. In

Fig.6, the student has increased the upper wedge an-

gle from 0.0 degrees to 5.0 degrees. The generated
shocks are of unequal strength, opposite family, and

intersect with each other then reflect from the op-

posing wedge producing a diamond shock pattern.

At the shock intersections, slipstreams are formed

as indicated by the dashed lines in the main view

window. The output box shows conditions in zone

3, the lower part of the first diamond. The flow in

zone 3, as well as the slipstream, are inclined at 5.0

degrees to the horizontal while the flow in zone 1 is

10.0 degrees and zone 2 is -5.0 degrees.

In plotting mode, the simulator behaves like a

desk top wind tunnel. The plotter is invoked by

pushing the "ON" button in the left sub-panel of

the input box, as shown in Fig. 7. In the main view

window a set of axes, labeled _X" and '¢Y_ appear
as does a set of cross-hairs which define the location

of a probe. The user pushes the "New Plot" button

to enable the choice buttons in the right sub-panel



marked"Probe". Here,thestudentchooses a de-

pendent variable from the upper group of six vari-
ables versus a direction chosen from the lower two

buttons. As the choices are made, the axes in the

plotter view window are automatically labeled and

scaled. In Fig. 7, the user has chosen to plot static

pressure ratio versus X direction as indicated by the

lights on the buttons. The student moves the '_Y"

slider in the "Probe" sub-panel and the cross-hairs
move in the main view window until the desired lo-

cation is found. The student then pushes the "Be-

gin Trace" button which freezes the Y location of
the cross hairs. The user then varies the "X" slider

to any desired value and presses the '_rake Data"

button. At this point a "*" appears on the graph

corresponding to the chosen value of X direction and

calculated value of dependent variable (pressure ra-

tio). The student then uses the "X" slider to select
a new X location and again '_rake Data". A new

point appears on the plot and the procedure is re-

peated to a maximum of twenty five data points.

The data can be taken in any order, so the stu-

dent can fill in interesting portions of the curve. In

Fig. 7, eleven data points have been taken. When
the student has completed a trace, the "End Trace"

button is pushed which frees the "Y" slider, draws a

solid color-coded line through the data, and affixes
a colored label with the value of the Y location. The

student can then choose a new value of Y and begin

a new trace as before. Fig. 8 shows the screen dump

after the student has begun a new trace. In this ex-

ample, eight data points have been taken along the
new trace, and the old trace has been labeled in the

upper right corner of the plotter window. The probe

is now located in zone 4. The student can put up to

five traces on the plotter. To begin a new plot, the

student pushes the "New Plot" button, the old plots

are erased, the count boxes for traces and data are

reset to zero, and the "Probe" buttons can be used

to pick new independent and dependent variables.

Since no educational tool would be complete with-

out an examination, a question and answer box has

been added at the lower right corner as shown in

Fig. 8. The questions and answers are stored in
a data file which the simulator accesses. Teachers

can edit this data file and add, modify, or delete

questions and answers as required. To operate this

feature, the student pushes the "Question" button

for a question, then uses the simulator to obtain an

answer, then presses the "Answer" button to check

the answer. The questions can appear in the win-

dow either sequentially or randomly as chosen by

the student with the appropriate buttons. The cur-

rent set of questions and answers initially presents

easy questions to promote an interaction of the stu-

dent with the simulator. Gradually, more difficult

questions are introduced. If the student chooses

the random order of presentation, difficult and easy

questions are intermingled. As currently configured,

the simulator runs through the same questions every

time the simulator is invoked. This portion of the

tool can be modified to present questions from dif-

ferent data files or even questions with a timer but

without the provided answers - a true examination
tool.

SUMMARY

A workstation-based, highly interactive educa-
tional tool for compressible aerodynamics has been

developed. The tool is an extension of an earlier

model and can now solve three flow problems: flow

past a corner, flow past two wedges in series, and

flow past two opposing wedges. The underlying as-

sumptions and analysis techniques which form the
basis for this tool have been presented in this pa-

per, as well as several examples of results from the

simulator. The tool employs two basic ideas to help

undergraduates better understand fluid mechanics.

First, the student is required to interact with the
tool to produce results. The student is in control

of the parameters defining the problem and must
perform several steps to produce the plotted out-

put. The question and answer box also requires the

student to act and not merely observe. Second, the

output results are presented to the student in a va-

riety of forms. For a given flow problem the student

can see a schematic of the geometry, the shock lo-

cation and interactions, tabulated numbers of the

dependent flow variables, moving bar charts of the

flow variables, and plotted data. Further extensions

of this technology into other flow regimes and other

physics problems are planned.
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